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Do you need a tunable laser for resonant cavity optical
sensors?

Mohamed Najih, Rania Gamal, and Andrew Kirk

Electrical and Computer Engineering, McGill University, Montréal, QC, Canada

ABSTRACT

By measuring the shift in the resonant frequency of whispering gallery modes in an optical microcavity, it is
possible to obtain very high sensitivity to changes in the properties of the surrounding medium and the sensor
surface. However, a narrow linewidth tunable laser is typically required in order to track the frequency shift. This
significantly increases the cost and complexity of such systems. Phase shift cavity ring down spectroscopy (PS-
CRDS) represents an alternative approach. In PS-CRDS the interrogating optical signal is sinusoidally modulated
and the shift in the phase of the detected signal (rather than the shift in the cavity resonant wavelength) provides
information about changes in the cavity properties. PS-CRDS has previously been successfully implemented in
resonant optical microcavities, but a tunable laser was still used in order to maintain coupling to the cavity
resonance. Here we consider the use of a broadband optical source (e.g. a diode laser or LED) to interrogate the
cavity using the PS-CRDS principle. The spectrum of the source always spans more than one cavity resonance
and so does not need to be tuned as the cavity resonances shift. We undertake an analytical and experimental
investigation to evaluate the effectiveness of this approach and compare it to traditional interrogation methods in
terms of sensitivity and signal-to-noise ratio. We focus in particular on the implementation of a resonant cavity
biosensor in silicon photonics ring resonators. The results of the study show that the sensitivity to changes in
cavity mode loss is slightly lower than when a narrow linewidth source is used, and that sensitivity to changes
in the effective refractive index is very significantly reduced. We will discuss the implications of these results in
terms of suitable applications of this technique, and the improved potential for integration that the low coherence
source brings.
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1. INTRODUCTION

As a precurosr to our work, we need to start by discussing Whispering gallery mode (WGM) resonators, and cavity
ringdown spectroscopy (CRDS). WGM resonators are known for their ease of fabrication, ultrahigh Q-factor, and
stability. they have many applications1 and could be employed as filters,2–4 lasers ,,5–7 and sensors.8–14 WGM
waves are confined to the outer circumference of a microcavity via total internal reflection; their evanescent tail
is continuously scanning the cavity surface; this makes WGM resonators very useful for sensing applications. In
a sensing event, the resonant wavelength or frequency of the cavity shifts according to the material under test.
However, a major drawback, is that the interrogation of the WGM requires a tunable laser. The use of tunable
lasers is problematic as they tend to be costly, bulky, and require frequency tracking.

Cavity Ringdown Spectroscopy (CRDS) is a well-researched technique that was created for the purpose of
measuring mirror reflectivities and the optical properties of atoms,15 and has been used to measure the absorption
of gases in the atmosphere.16–19 CRDS works by coupling a laser into a cavity and then turning the laser off; a
fraction of the light is absorbed by the cavity, while the remainder leaks out of the cavity over a period of time
known as the ringdown time; this ringdown time is directly related to the absorption of the test object. The
CRDS output requires an exponential fitting algorithm which significantly increases the acquisition time. We can
avoid this issue through using phase-shift CRDS (PS-CRDS). In PS-CRDS, a sinusoidal, amplitude-modulated,
continuous-wave light source is injected to the cavity, thus producing an output with a phase-shift with respect
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to the input; this shift is related to the ringdown time, by tanφ = ωm, where φ is the phase shift and ωm is the
modulation frequency

PS-CRDS systems that employ a coherent source have a variety of applications and are well-researched.20–22

A notable example of tunable laser-based PS-CRDS systems was demonstrated by Cheema et al.23 where a
microtoroid cavity was used to sense antibody-antigen binding in a liquid environment. In that work, light
was coupled into a microtoroid via a tapered fiber. The Q-factor and resonant wavelength were measured
simultaneously in real-time.24 To demonstrate the validity of the model, we will present an example of our
model based on Cheema’s work.

In this paper, we aim to mathematically analyse the coherence properties of broadband PS-CRDS systems.
By using a broadband source instead of tunable laser, the cost and complexity of the system can be significantly
reduced.

The challenge presented in this work lies in determining the amount of phase-shift that can be produced by
using an incoherent source. We will present a mathematical model that represents a partially coherent PS-CRDS
system through employing Gabor’s analytic signal representation.25 In the first section, the microcavity system
parameters are analyzed. The following section provides models for the CRDS and PS-CRDS interrogation
mechanisms; in that section, the complex gain coefficient of the system is derived. The fourth and final section,
presents an example of a PS-CRDS microcavity system to which the model developed in the former two sections
is applied.

2. OVERVIEW OF THE MICROCAVITY SYSTEM

Figure 1. Phase-shift cavity ringdown spectroscopy system diagram.

The PS-CRDS system under investigation is shown in Figure 1; it comprises of a light source, an intensity
modulator, a photodetector, a lock-in amplifier and an electronic read-out system. The light source is modulated
by the carrier signal, which is an intensity-modulated sinusoidal signal. Afterwards, it is coupled into the cavity.
The output signal intensity from the cavity is measured by the photodetector and then sent to a lock-in amplifier
in order to remove all the spectral components that do not correspond to the frequencies of the input signal.
Finally, post-processing of the output of the lock-in amplifier is performed by an electronic readout system. The
goal of this work is to establish a relationship between the gain and phase of the output signal to the transmission
properties of the cavity.

The input signal, x(t), is the product of the carrier signal, c(t), and the square root of the intensity modulation
signal, or the amplitude modulation signal which is denoted by m(t). For a CRDS system, m(t) can be simply
modelled as a unit step function. When µ(t) is continuous, as is the case in PS-CRDS, m(t) is as follows:

m(t) =

√
1− h sin2(πνmt+

φm
2

), (1)

where h = [0, 1] is the modulation depth, νm is the modulation frequency, and φm is an arbitrary phase factor.



We assume that the carrier signal, c(t), has a Lorentzian energy spectral density. This assumption is reason-
able since the majority of coherent optical sources, such as lasers, possess spectral densities that are very close
to the Lorentzian distribution. The energy spectral density of the carrier is given by:

|C(ν)|2 =
Rc(0)

π∆ν

[
(ν/2)2

(ν − νc)2 + (∆ν/2)2
+

(ν/2)2

(ν + νc)2 + (∆ν/2)2

]
, (2)

where Rc describes the autocorrelation of the carrier signal at zero delay, which describes the energy of the carrier
signal, νc is the central frequency of the carrier signal, and ∆ν is the full width at half maximum (FWHM) or
the bandwidth of the carrier. To calculate the output power of the system, it is necessary to calculate the
autocorrelation function of the analytic signal representation of the carrier signal, ĉ(t), as it will later appear in
the output of the photodetector. First, the autocorrelation of c(t) is computed through computing the inverse
Fourier transform of |C(ν)|2. Next, the autocorrelation of the analytic carrier signal is evaluated using the
relation, Rẑ(τ) = 2[Rz(τ) + jHt−τ{Rz(t− τ)}(τ)], where the symbol H{x} denotes the Hilbert transform of x,
and τ represents a time delay. Finally, using Bedrosian’s theorem,26 the autocorrelation of ĉ(t) can be described
as:

Rĉ(τ) = 2Rc(0)e−π∆ν|τ |ej2πνcτ (3)

This is the general autocorrelation function of ĉ(t), and can be used to describe the behavior of a partially
coherent ĉ(t). The autocorrelation of a coherent ĉ(t), and an incoherent ĉ(t) can be calculated by taking the
limit of Rĉ(τ) as ∆ν goes to zero, and infinity, respectively.

Now the next step is to study the output signal of the photodetector. We assume that the signal input
to the photodetector has the intensity, z2(t). The photodetector’s output, Pτ , can, hence, be described as the
convolution of the signal intensity with the impulse response, p(t). The spectrum of the impulse response,
P (ν), must have a finite bandwidth since photodetectors cannot respond instantaneously to their input. The
response of LPFs in the time domain can be calculated as a moving average; thus, p(t) can be approximated
as p(t) ≈ 1 if t ∈ [0, Tp] or 0 othwerise, where Tp is the response time of the photodetector. Therefore,

Pτ{z2(τ)}(t) ≈
∫ t
t−Tp

dτz2(τ). Technically, p(t) is a rect function, so the spectrum of p(t) is a sinc function, but

for our purposes, it will be assumed that P (ν) is zero at frequencies above νp ∼ T−1
p by explicitly approximating

the spectrum as having a finite bandwidth, where P (ν) ≈ P (ν) if ν ∈ [−νp, νp], or 0 otherwise.

In order to relate z2(t) to ẑ(t), the spectrum of |ẑ(t)|2 is examined. By taking the Fourier transform of |ẑ(t)|2,
we find that Ft{|ẑ(t)|2}(ν) = 2Ft{z2(t)}(ν)−2Ψz(ν), where Ψz(ν) is an error term. Hence, by taking the inverse
Fourier transform, we get:

|ẑ(t)|2 = 2z2(t)− 2ψz(t) (4)

where ψz(t) = F−1
ν {Ψz(ν)}(t). Details concerning Ψz(ν) are rather complicated, so for the sake of brevity, we

will only concern ourself with this conclusion: the approximate error term is zero for sufficiently small frequencies.
If the reasonable assumption that λc ≤ 3000nm → νc ≈ 1014Hz is made, it can be claimed that Ψ̃z(ν) = 0 for
|ν| ≤ 1014Hz. The cut off frequency of a photodetector is at the most in the tens of gigahertz, so it can be also
be claimed that P̃ (ν) = 0 for |ν| ≥ 1010Hz. Therefore, the power contribution of the error term, Pτ{ψz(τ)}(t),
is zero. Thus, the error term can be neglected, and the photodetector’s response can be calculated as:

Pτ{z2(τ)}(t) ≈ 1

2
Pτ{|ẑ(τ)|2}(t) (5)

We will see that the photodetector’s response to the argument ẑ(t− α)ˆ̄z(t− β) will appear in the upcoming
derivations, where α and β denote time delays introduced to the optical fields as they circulate within a cavity.
Hence, the output power can be written as:



Pτ{ẑ(τ − α)ˆ̄z(τ − β)}(t)

≈
∫
R
dτ m(τ − α)m(τ − β)ĉ(τ − α)ˆ̄c(τ − β)p(t− τ)

≈ m(t− α)m(t− β)

∫ t

t−Tp

dτ ĉ(τ − α)ˆ̄c(τ − β)

(6)

The impulse response serves to set the limits of the integration. Additionally, the modulation signal varies
slowly in comparison to the photodetector’s response time, so it can be taken out of the integration. Also, note
that ĉ(t) is very quickly varying in comparison to the photodetector’s response time, therefore, the integral in the
previous equations is approximately independent of t and Tp; therefore, the integration over Tp is approximately
proportional to an integration over the real line with a constant of proportionality Pĉ independent of t, α,and
β. Consequently, the integration can be approximated as Pĉ

∫
R dσĉ(σ)ˆ̄c(σ− [β −α]), where σ := τ −α. Observe

how the autocorrelation function appeared in the detector output as has been mentioned beforehand. Finally,
the output power of the detector is given by:

Pτ{ẑ(τ − α)ˆ̄z(τ − β)}(t) ≈ m(t− α)m(t− β)PĉRĉ (7)

We now consider a cavity in the form of a four-port ring resonator with input x̂(t) and output ŷ(t). The ring
resonator is made of a material with refractive index n and transmission coefficient tn. The half circumference
of the ring is denoted by d. The length travelled by the light wave from one coupling region to the next, or the
optical path length is given by ` := nd. The time it takes to travel that distance is given by ∆t := `/c0 . The
transmission and coupling coefficients of the evanescent wave coupling region are denoted by τi and κi. It is
assumed that the ring-resonator dissipates the fields going through it. Generally, the output of the ring resonator
is the summation of each input field multiplied by the coupling and transmission coefficients. By calculating the
first few iterations of the light wave within the resonator, it is found that:

ŷ(t) = κ1κ2tn
∑
k∈N

[τ1τ2t
2
n]kx̂(t− [2k + 1]∆t) (8)

The effective transmittance is defined as T := κ1κ2tn; the effective reflectance, on the other hand, is defined
as R := τ1τ2t

2
n. Additionally, odd multiples of the time delay can be denoted by ∆tk := [2k + 1]∆t for k ∈ N.

We need to rewrite the output of the ring resonator as an intensity, in order to computer the photodetector’s
response:

|ŷ(t)|2 = |T |2
∑
k,∈N

∑
l∈N
RkR−lx̂(t−∆tk)ˆ̄x(t−∆tl) (9)

In order to evaluate the output power of the photodetector, the following steps are taken: first, equation
6 is used to compute Pτ{y2(τ)}(t). Next, the carrier autocorrelation function, Rĉ, appears through the use
of equation 7. Then, Rĉ is reformulated using equation 3. Finally, the output power of the photodetector is
described as follows:

Pτ{y2(τ)}(t) ≈ |Tc|2
∑
k∈N

∑
l∈N
RkcR−1

c e−∆|l−k|m(t−∆tk)m(t−∆tl) (10)

where the terms Tc,Rc, and ∆ are used to approximate the above expression; Tc := T
√
Rc(0)Pĉ,Rc :=

Re−j4πνc∆t, and ∆ := 2π∆ν∆t. The power of the input signal can be obtained in a similar fashion and
will yield:

Pτ{x2(τ)} ≈ Rc(0)Pĉm2(t) (11)



3. ANALYTICAL MODEL OF CAVITY-BASED SYSTEMS

Now that we have described all the signals in our system, we now need to derive the input and output power for
CRDS and PS-CRDS. These calculations are necessary for understanding the coherence effects on the system.

3.1 Power and Gain Calculations

In a CRDS system, the light source is turned on and then off, therefore, the carrier will be modelled as a unit
step function. From equation (11), it can be concluded that the input modulated signal for CRDS is derived as
follows:

Pτ{x2(τ)}(t) ≈ Rc(0)θ2(−t) = [Rc(0)Pĉ]θ(−t) (12)

where θ denotes the unit step function.

In a similar fashion, the output can be derived by inserting the unit step function into equation (10). After
some calculations, we conclude that:

Pτ{y2(τ)}(t) ≈ Rc(0)PĉG|R|2N(t), (13)

where N(t) :=
⌈

(t−∆t)
2∆t

⌉
θ(t−∆t), and G is the gain, and is given by:

G =
1− |R|2e−2∆

1− |R|2

{
|T |2

2|(1−R|e−∆ cos(2φc − ∠R) + |R|2e−2∆)

}
(14)

Expressing equation (13) in terms of an exponential yields the output model:

Pτ{y2(τ)}(t) ≈ [Rc(0)Pĉ]Ge−2 ln( 1
R )N(t) (15)

Hence, the ringdown time of the cavity can be written as,

τ0 :=
∆t

ln(1/|R)
(16)
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Figure 2. Relationship between τ0/∆t and |R|/|tn|2 for identical and lossless interfaces for CRDS

The dependence of the ringdown time on the value |R|/|tn|2 is shown in Figure 2 for three values of —tn|2. It
can be seen that as the effective reflectance increases, the cavity confines light for longer periods of time, hence,
lengthening the ringdown time.



It is challenging to express the measured output in closed-form due to the square root in equation (1). Hence,
we will resort to using an approximation of the modulation signal for the PS-CRDS system:

m̃(t) =

(
1 +
√

1− h
2

)
+

(
1−
√

1− h
2

)
cos(2πνmt+ φm) (17)

Next, equation (17) in plugged into equation (10) to produce the output of the lock-in amplifier,

[Pτ{y2(τ)}(t)]νm ≈
[
RcPĉh

2

]
|Γ| cos(2πνmt+ φm + ∠Γ) (18)

where we introduce the complex gain coefficient, Γ, as

Γ :=
|T |2e−jϕm

1− |R|2 exp−j2ϕm{
1

2

[
1

1− |R|e−∆e−j(2ϕm+2ϕc−∠R)

+
1

1− |R|e−∆e−j(2ϕm−2ϕc+∠R)

]

+ <

[
1

1− |R|e−∆ exp−j(2ϕc−∠R)

]
− 1

}
(19)

where ϕm := 2πνm∆t and ϕc := 2πνc∆t.

Similarly, the input power can be obtained by inserting equation (17) into equation (11), which yields,

[Pτ{x2(τ)}(t)]νm ≈
[
Rc(0)Pĉh

2

]
cos(2πνmt+ φm) (20)

3.2 Temporal Coherence Studies

Now, it is possible to study the model’s prediction for an incoherent carrier. To achieve this, the limit of the
frequency as it tends to infinity was taken for the complex gain coefficient. This process yields:

Γ|∆ν→∞ := lim
∆ν→∞

Γ =
|T |2e−jϕm

1− |R|2e−j2ϕm
(21)

Figure 3 plots the PS-CRDS phase shift versus the modulation frequency for three values of |tn|. Here, the
interfaces of the cavity are assumed to be identical and lossless, and |R|/|tn|2 is taken as 0.99; these assumptions
will be held throughout this section. The downward trend occurs because of the time delay experienced by the
signal when travelling a distance equal to the optical path length. On the other hand, the cavity dynamics
introduce oscillatory deviations around ∠Γ = −π(νm/FSR). Note that for a unity |tn|, the phase shift is
discretized into odd multiples of π/2 and decreases by a factor of π when the modulation frequency is increased
by a single FSR. Moreover, as |tn| is reduced, the phase shift shows a more linear relationship with the modulation
frequency.

Figure 4 depicts the scaling of the measured output with respect to the input versus the modulation frequency
for three values of |tn|. As can be expected, a smaller transmission coefficient leads to a smaller output. The
maxima occur when ∠Γ = −π(νm/FSR); this happens because the intensity of the signal entering the cavity
can be in or out of phase with the intensity of the reflections within the cavity. When the modulation frequency
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Figure 3. Phase-shift of incoherent carrier vs. modulation frequency per FSR for different transmission coefficients.
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Figure 4. Output scaling of incoherent carrier vs. modulation frequency per FSR for different transmission coefficients.

is an integer multiple of the FSR, the intensity of the signal entering the cavity is perfectly in phase with the
reflections within the cavity. As for the coherent carrier, the complex gain coefficient is defined as:

Γ|∆ν=0 :=
|T 2|e−jϕm

1− |R|2 exp−j2ϕm{
1

2

[
1

1− |R|e−j(2ϕm+2ϕc−∠R)

+
1

1− |R|e−j(2ϕm−2ϕc+∠R)

]

+ <

[
1

1− |R| exp−j(2ϕc−∠R)

]
− 1

}
(22)

We now introduce the fractional part function, where frac(t) := t− k, where k ∈ Z such that 0 ≤ t− k ≤ 1.

Figure 5 shows the phase shift versus the modulation frequency for three values of the carrier frequency. The
transmission coefficient was set to unity in order to focus on the effects of νm and νc. Similar to the case with
the incoherent carrier, the phase shift is clamped to integer multiples of π/2 based on the modulation frequency.
Similarly, the curves follow a downward trend.

Figure 6 exhibits Γ|∆ν=0 with respect to the modulation frequency for three values of the carrier frequency.
Here, the values of νm where the sharp cusps occur correspond to the locations where ∠Γ|∆ν=0 abruptly changes.
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Figure 5. Phase-shift of coherent carrier vs. modulation frequency per FSR for carrier frequencies.
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Figure 6. Output scaling of coherent carrier vs. modulation frequency per FSR for different carrier frequencies.

There is a strong dependence of Γ|∆ν=0 on the relative detuning of the carrier with respect to the cavity’s
spectrum; the spectrum of the cavity, G|∆ν=0 plays an important role in understanding this behavior. When νc
is located at a peak of G|∆ν=0, there will be a maximum in the output whenever νm is an integer multiple of
the FSR (frac(νc/FSR) = 0). On the other hand, when νc is located at the minimum of G|∆ν=0, there is a
maximum in the output whenever νm is an odd integer multiple of FSR/2 (frac(νc/FSR) = 1/2). For the third
and final case, there are two peaks since each side band of X(ν) corresponds to a peak in G|∆ν=0 at a different
νm. Note that the spectrum, X(ν), consists of two deltas positioned at (νc − νm) and (νc + νm).
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Figure 7. Phase-shift of partially coherent carrier vs. modulation frequency per FSR for different carrier frequencies.

Lastly, for a partially coherent carrier, equation (19) is used. It is also be assumed that (frac(νc/FSR) =
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Figure 8. Output scaling of partially coherent carrier vs. modulation frequency per FSR for different carrier frequencies.

1/6). Figures 7 and 8 illustrate the phase shift and the output scaling versus the modulation frequency, re-
spectively. It is clear that as the carrier linewidth is increased, the behavior of the curves start to resemble the
incoherent case. As the bandwidth increases, a larger portion of the cavity spectrum contributes to the measured
output, which blurs out the exact location of the carrier frequency.

4. VERIFICATION OF PROPOSED MODEL

To verify the information presented so far, the principles that were previously stipulated were applied to char-
acterize the system presented in.23 This system comprises a silica microtoroid that employs a tapered fiber for
coupling. The system parameters and assumptions made, are listed in Table 1. The optical source used in this
system is the Velocity TLB-6704 tunable laser by New Focus;27 for this source, the carrier signal is centered at
472 THz with a bandwidth of approximately 200 kHz. By virtue of its very narrow linewidth, this source can
be approximated as a coherent source. Furthermore, to study coherence effects, we model the partially coher-
ent source after a laser diode (WSLP-635-002m-Pm-PD28); the peak wavelength of this laser diode is centered
between 630 nm and 640 nm, so for simplicity, we will assume it is located at the resonant wavelength of the
cavity; the bandwidth is about 1.48 THz.

Table 1. Microtoroid Parameters

Parameter Value Description

D 105µm Diameter

λpeak 636nm Resonant Wavelength

δλ 210fm Peak Width

n 1.45693 Refractive Index

tn 1 Transmission Coefficient

FSR 624GHz Free Spectral Range

τ1 = τ2 in R Coupler Transmission Coefficient

The gain (equation (14)) of the system is explored in Figure 9, where it is seen that there is an inverse relation
between the gain and |tn|. Additionally, the gain for the laser diode is roughly three orders of magnitude less
than the gain for the tunable laser; this severe attenuation is due to the significantly smaller amount of energy
in the laser diode’s spectrum that corresponds with the cavity’s resonance.

The response of the gain to a variation in the refractive index was also studied. It was found that for a
sufficiently large refractive index change (∆n ≈ 2×10−7), the gain factor for the tunable laser starts to decrease;
this behavior occurs because the increase in n causes a decrease in the cavity’s FSR; this causes the resonant
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Figure 9. Relationship between gain and coupling coefficient for tunable laser and laser diode.

frequency to detune from the tunable laser’s central frequency. Nevertheless, the laser diode appears to be
completely insensitive to variations in the refractive index; in this case, even if the cavity’s resonant peaks shift
due to the increase in ∆n, approximately the same number of peaks fall within the carrier bandwidth.
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Figure 10. Relationship between ringdown time and transmission coefficient.

Next, we will focus on the behavior of the ringdown time. Figure 10 shows a plot of the ringdown time as
a function of the microtoroid transmission coefficient. Since the ringdown time is independent of the carrier
bandwidth, the behavior the tunable laser and the laser diode will be identical. As expected, the ringdown time
decreases as the transmission coefficient decreases. The response of the ringdown time to changes in the cavity’s
refractive index was also explored. Generally, the ringdown time does not vary for small changes in the refractive
index, but for changes larger than ∆n ≈ 10−5, the ringdown time increases exponentially.

Next, the complex gain coefficient for the system is evaluated. For this purpose, the frequency modulation is
set as 13 MHz, as was the case in.? Figure 11 depicts the change in ∠Γ as the transmission coefficient is varied.
The phase shift of the tunable laser and the laser diode turn out to be sensitive to changes in |tn|; more so, the
phase shift of the tunable laser is roughly twice that of the laser diode. This phenomenon can be attributed
to the fact that the very small linewidth of the tunable laser is strongly influenced by the cavity’s resonance,
whereas, the bandwidth of the laser diode interacts with several peaks in the cavity’s response which leads to
cancellation from the contributions of different parts of the cavity’s spectrum.

In Figure 12, the output scaling as a function of |tn| is shown. Less energy exits the cavity due to absorption
and scattering effects, as the transmission coefficient is reduced; this results in a decrease in |Γ| for both sources.
As would be expected, the output scaling for the laser diode is considerably smaller—roughly three orders of
magnitude—than that of the tunable laser.
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Figure 12. Output scaling vs. transmission coefficient for tunable laser and laser diode.

Lastly, the complex gain coefficient was evaluated against refractive index variation (∆n = [10−9, 10−4]). It
is found that the phase shift and output scaling of the laser diode are completely insensitive to variations in the
refractive index due to the reason discussed in the ringdown time’s response to ∆n. On the other hand, |Γ| and
∠Γ appear to be measurable for the tunable laser in the range 10−7 ≤ ∆n ≤ 10−6 by virtue of the peaks in
cavity spectrum detuning from the narrow linewidth of the laser signal.

5. CONCLUSION

We studied the effects of temporal coherence on CRDS and PS-CRDS in order to anticipate the performance of
a broadband PS-CRDS sensor system. We found that the bandwidth of the laser has a significant effect on the
performance and measurability of certain parameters. A significant discovery is that systems with less coherent
sources are insensitive to refractive index variations, however, they are sensitive to absorption. Therefore, for
a broadband biosensing PS-CRDS system, the biosensing event must induce some absorption in order for the
system to work. For CRDS, larger source bandwidths generally result in a smaller output power. Alternately,
the effect of the source bandwidth of a PS-CRDS system on the output power depends on the values of carrier
and modulation frequencies. These reported dynamics should be taken into consideration when designing a
cavity-based spectroscopy system with a partially coherent source.
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